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SUMMARY 

The first six moments are given for four equations commonly used to describe 
mass transfer in packed beds, In each case the first ordinary moment is found to 
be independent of the mechanism of mass transfer. The skewness and kurtosis vary 
as N-s and N-1, respectively, where N is the number of theoretical plates. For 
a sufficiently large number of theoretical plates all models converge to a Gaussian 
curve, 

INTRODUCTION AND DEFINITIONS 

Many important processes, such as gas adsorption, liquid extraction, gas 
chromatography (GC), and catalytic processing, are based in part on ,dynamic par- 
titioning between a moving and a stationary phase. The problem of obtaining 
an adequate mathematical description of these processes has been attacked again 
and again from a number of viewpoints, but the main contributions have been from 
two fields : chemical engineering and GC. In this paper we use a standard mathe- 
matical method of analysis by moments to compare the most common equations 
for mass transfer in packed beds. 

The number of different equations proposed for describing dynamic adsorption 
is a result of the mathematical difficulty of the problem. Most theories of dynamic 
adsorption consider only one or two mechanisms of mass transfer, although a 
number of mechanisms could be important. Further these theories usually include 
additional simplifying assumptions such as a linear partition isotherm, constant 
diffusion coefficients for diffusion in both the mobile and stationary phases, a dilute 
concentration of adsorbate in the mobile phase, and a constant temperatu.re 
across the adsorption bed. In spite of these and other simplifications, the final 
expressions are usually quite complex and their use requires the help of tables 
and/or computers. The complexity of these expressions prevents them from giving 
a clear insight into their physical nature. 

Analysis by moments is a very powerful mathematical tool and can be used 
i as a means of comparing the previously derived equations for breakthrough curves. 

From an experimental viewpoint only the fist five or six moments need. be cal- 
culat,ed; the higher moments are difficult to determine, from experimental data. 
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2 0. GRUBNER, D. UNDERNILL 

For this reason the first six moments characterize a breakthrough curve as accurately 
as is needed for a comparison between theory and experiment, and to support 
this view we will give here the first six statistical moments calculated from some 
of the well known theories of GC. 

The moments given here are the temporal moments, i.e., calculated using 
powers of the time coordinate. If these moments are taken about t = o, this defines 
the ordinary temporal moments. 

ii& = 
s 

W t’c(t)dt (1) 
0 

The central temporal moments are calculated about the first ordinary moment, viz., 

Mi = 
s 

a (t - H,)‘c(t)dt (2) 
0 

A well known method of calculating ordinary moments uses the 9h derivative of 
the Laplace transform of c(t). If 

W) = ?c(t) (3) 
the 9 ordinary moment is 

Ml = (- I)’ lim 
d’ 

- c’ (s) 
S-0 dsi 

’ (4) 

By expanding eqn. 2, the ith central moment is found to be 
. 

These calculations can be speeded up by taking 

... Z(s)=e -a,+bsr-csJ+ds4-.~5+JS6 

&in eqns. 4 and 5 it follows that ’ 

.lU,=a 
Mz=zb 
Ms”6C 
M4= nb2 -I- atqd 
MS = Izo(bc -I- e) 
M6 = Izo(b3 $6bd -I- 32 -I- 6f) ’ 

(6) 

(7a-f) 

Using these moments we define the number of theoretical plates, N, the skewness, 
yl, and the kurtosis, y2, as’fpllows: 

;= Ml2 
M2 

(8) 
.I 

Yl 
=Mj 

M2 
* 

‘, ;Y2 
M4 ‘Z--,3 

Adz2 

(9) 
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ANALYSIS Oz; EQUATIONS . 

The theoretical chamber model ” 
i. 

The first widely used theory’ of beak spreading in chromatography assumed 
that the column could be visualized as a series of equivolume chambers, and 
that in each chamber a. rapid mixing of sorbate took place. These assumptions 
lead directly to an equation for the breakthrough curve, for if there is perfect 
mixing of a unit pulse input in the first chamber, the output from ‘that chamber 
must be proportional to the’quantity of sorbate remaining in the chamber, i.e., 

Cl(t) - p e-Wb) i 

tb 
I- (II) 

where : 
fi is the number of theoretical chambers 
te is the flowthrough time for the entire column, calculated as 

I’ tl, 3 (I1 -eJk -i-e)x 
V 

where 

,,, 
. . . 

(12) 

E is the fractional interparticle volume : 

V is the superficial carrier gas velocity ,/, . . 

x is the length of the column 
k is the partition coefficient for the sorbate between equal volumes of mobile 

and stationary phase, dimensionless. 
The Laplace transform of the output from the firs! chamber is 

El(S) = (I -I- St&g)- l .’ 1 ’ 

and from $ chambers in series 
f-P 

Z(s) = n q(s) 
. 

= ;;: St&)-p 

I I 

* 
I 

This last equation can be inverted.to give ‘. , “* 

P c-1 
” c(t) ==: p t 

, 
e - (PWb) 

m).(tb~P . 
. . 

. . 

‘. (13) 

(IS) _, 

r : (16) 

However, inversions are not always simple to obtain or once obtained, the 
most useful way to characterize the effects of mass transfer in the column.‘- 

Let us look at what can be determined from the Laplace transform, 
without going through the inversion procedure. Eqn,: 15 can be rewritten ,as 

or 

s4t; sstg s “tb6 -- -----l- ---... 
4.~~ SP” 6~’ 

ewe 15, 

. . 

~;i (17) ,3 
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from which, by eqn. 7 

Ii&=& 

M2 = G21P 
M4 = 3GJ4(IlP2 -I- 2/P? 
MS = 4tbswq3 -I- 6/P”) . 

(Isa-f) 

M3 = 2tb3/p2 M6 = 12oQ -!-+13+1 

8~’ 12p” j7 

These moments give detailed information about the nature of the break- I’.’ 
through curve. For example, the average holdup time, given by .@r, is independent 
of the number of theoretical chambers. Furthermore, the number of theoretical 
plates, calculated from the first and second moments of eqn. 7 is precisely equal 
to the number of theoretical chambers. 

The skewness of the curve, and the kur-tosis are, m order, 

Yr = &lP 09) 

~2 = 61~ (20) 
Both the skewness and kurtosis ace useful parameters to characterize breakthrough 
curves, but from the equations for the moments it is seen that with $>>xo, 
W RS 3M,2. These last results tell us that for large ~5 the breakthrough curve so 
closely approximates a Gaussian curve that experimental measurements of the 
difference are difficult to obtain. 

F&ha limited mass transfer 
The first widely used theory2 in chemical engineering to describe mass transfer 

in packed beds relied on the concept that mass transfer between the moving and 
the stationary phase is limited by diffusion through a thin film separating the 
phases. This can be regarded as a more complex theoretical chamber model in which 
the basic assumptions are now: (I) the stationary phase consists of an infinite num- 
ber of chambers; ’ (2) in each chamber there is a rapid mixing of sorbate and 
(3) the rate of mass transfer between a chamber and the moving phase is proportional 
to the difference in equilibrium between these phases. 

The assumptions listed above lead rapidly to an equation for a breakthrough 
curve. If a mass transfer function, g(t), is defined as the rate of transfer of sorbate 
to the stationary phase following exposure to a unit concentration of sorbate in 
a unit volume of mobile phase starting at time, t = o, then 

s (I - a)k 

0 
g(z)dz = 8 (I - ewar) 

where a is the time constant for mass transfer (set-l). 
The differential equation describing mass transfer in the column is 

v h(t) 
t s Dc( t) 

-Fax W&O 
0 

- z)dz -I- at = o 

(21) 

(22) ‘ I  

The Laplace transforms of these last two equations are, respectively, 

(1 - e)ktx ’ .: I 
ii(s) = s(a f s) (23) 
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and 

5 

V d;(s) 
F-&- + G(S)‘jlj(S) -I- G(s) = 0 

By integration 

z(s) = e-(sx/v) 

{ 

(1 -;y -I- 8 
> 

Or 

Z(s) = e -(sex/v)-[(s(l-s)&Y)/VJ { 1. - 5 .I. (-g - (g>s 4. (5)” l -* } (26). 

so 

Ml = ([I -e]k -I- 8)X 
V 

(24) 

(25) 

@7a-f) 

M2= 
20 - 8)kx 

I/Cl 

M3= 
60 - e)kx 

V/a2 

Mq= 
12(1 - Q2k2x2 24(1 - 8)kx 

V20t2 
-I- 

‘C/t? 

MS = 120 (1 - 8)2k2x2 I 8)kx - 

V20t3 
c( 

Va” 

0 - 8)3k3x3 90 8)2k2x2 - 60 - M6 = 120 

V3Ct3 

+ 

V2tX4 

+ s)kx 

V/as 

From these moments we can calculate the basic properties of the break- 
through curve. The number of theoretical plates, as defined by eqn. 8 is 

The skewness is 

J V 
Y1, = 3 20 - 8)kxa 

and the kurtosis 

6V 
” = (I - 8)kXCt 

(29) 

(30) 

These last three equations give the basic properties of the breakthrough 
curve in a simple but exact form, and in each equation the effect of the physical 
parameters on mass transfer can be seen clearly. For example,: the number of 
theoretical ,plates, the skewness, and the kurtosis vary as the superiicial velocity 
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6 ,’ 0. GRUBNER, D. UNDERHILL 

to the -I, x/2 and r power, respectively. Instead of calculating moments from 
eqn. 25 we have the alternative of inversion. This particular equation for c(l) is well 
knowi?, its use involves a modified Bessel function, of order one, and it must be 
admitted that at least part of our incentive for the use of moment analysis is our 
difficult; to visualize directly the properties of the breakthrough curve from this 
function. 

~ntraj!uwiicZe o?@kion 
,i,’ 

The more recent theories of chromatography consider in detail the processes 
of diffusion that take place in the interparticle and intraparticle spaces. We will 
show here, how analysis by moments can reduce these seemingly complex equations 
to simple understandable forms. 

For mass transfer controlled by diffusion into homogeneous spheres, the 
mass transfer function, g(s), is equal to8 

where 
d, = sorbent particle diameter (cm) 
D = intrapCarticle diffusion coefficient (cma/sec) , 

Expanding the above function into 

Mi = (II -alk -I- 431% 
V 

(31) 

an infinite series leads to 

(32a-f) 

,g(I-a)kx 

7 v 
MS 3 !$?{(I --;I,,>, {$}3 + 1875 (I ;skX {$}4 

M6=~S((I_ys)kx}3{$}3~ 6;;5{(r-;)kx}2{$}4+ 

+7773750 - ENX 
7oo7v 

and from these moments 
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(35) 

and these factors, as in the previous example, give the effect of the physical param- 
eters on the shape of the breakthrough curve. 

If an equation for the breakthrough curve is needed, the simplest procedure 
is to use the moments given above with either an Edgeworth or Gramm-Charlier 
series. The alternate procedure of the inversion of the Laplace transform, UC(s), cannot 
be done in terms simpler than an infinite integral. 

For mass transfer controlled by diffusion in the interparticle space, the 
diff ercntial equation is 

D G2c(t) v k(t) --_T~_{(~)k+I}c$LLo 
g ax2 

(36) 

where Db = interparticle diffusion coefficient (cmg/sec). 
The Laplace transform of the above equation is 

(37) 

from which on integration it follows that: 

E(s) = e’ 
{(J+4s([l _[!_])g (38) 

This last: equation can be inverted to give : 

(39) 

c(t) = p 

The square root factor in the exponent of eqn. 38 can be written as a binomial 
expansion; once this is done it is not difficult to find that: . 

Ml = tl, (40a-0 

M2 = tb2/N 

M3 = 3tb3/N2 
Mb = tb4(3/N2 -I- 15/N3) 
MS = t&O/N’ -I- 105/N4) 

MG = t&s/N’ -I- 315/N” + g&N’) 

where N, to be consistent with eqn. 8, is 

N 
XV I- 

20,8 
(41) 
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COMPARISON OF BREAKTHROUGH CURVES 

Having calculated the moments from four well known chromatographic 
theories, let us look at their similarities and differences. For each theory the 
average holdup time, MI, is independent of the mechanism of mass transfer and 
equal, exactly to the flowthrough time, tb. This independence permits us to 

calculate from a measured MI value the partition coefficient, Iz, without having 
to correct for mass transfer effects. 

Table ‘1 lists the skewness and kurtosis calculated from these breakthrough 
curves. One simplification has been made, namely (l-.$12> > E, and this was 
needed only for the cases of film controlled and intraparticle diffusion controlled 
mass transfer. Note that in each model the skewness and kurtosis vary as N-x 
and N-l power, respectively. Furthermore, the numerical coefficients for the skew- 
ness are not highly different from each other. The same is true, to a lesser degree, 
of the numerical coefficients for the kurtosis. Another point that we wish to make 
is that for N k: 100 or greater, these curves become quite similar and differences 
between them, if perfect physical models of each could be constructed, would be 
difficult to measure experimentally. Finally, and this has been the main point of 
the paper, the effect of various physical parameters on the nature of a breakthrough 
curve can be rapidly determined through moment analysis. 

TABLE I 

VALUES FOR SKEWNESS (yz) AND KURTOFIS (yz) CALCULATED FROM BREAKTHROUGI-I CURVES BASED 

ON DIPBERENT MODELS 

Mode2 Yz Ya 

Theoretics1 chamber 
Film conLrolled cliff usion 
Intrapar9icle diflusion 
Interpart4cle cliflusion 

2/1/N 6/N 
3/2.\/N 
15/(71/N) 

3/N 

3ldN 
45l7N 
s5lN 

LIST OF SYMBOLS 

M ith central moment (sect) 
Mi l ith ordinary moment (seed) 
8 Time following injection of sorbate into column (set) 
0) Effluent outflow of sorbate at time t 

S Laplace coordinate (set-1) 
a, b, c, cl, c, f Coefficients for s 

& 
Length of column (cm) 
Number of theoretical plates 1.‘ 

Yl. Skewness 

: 
Kurtosis 
Flowthrough time (set) 

;, 
Fractional interparticle volume 
Superficial carrier gas velocity (cm/set) 

J.,Chvomatogv,, 73 (x.972)’ r-g 



MASS TRANSFER IN PACKED BEDS 9 

Partition coefficient 
Number of theoretical chambers 
Function for interphase mass transfer (se+) 
Time constant for interphase mass transfer (se+) 
Integration parameter (set) 
Intraparticle diffusion coefficient (cm+ec) 
Sorbent particle diameter (cm) 
Interparticle diffusion coefficient (cm2/sec) 
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